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Abstract The frequency dependence of the self energy of
a general many-body problem is identified as a main obsta-
cle in correlation calculations based on local approaches. A
frequency independent formulation is proposed instead and
proven to yield exactly the same numerical results as the orig-
inal common scheme. Our approach is embedded in a general
local-orbital based ab initio frame to obtain the Green’s func-
tion for large heterogenous systems. First, a Green’s function
formalism is introduced. Then the self energy is constructed
from an incremental scheme. Subsequently, we apply the
proposed frequency independent formulation. The theory is
applied to para-dithiolbenzene as a realistic system and the
numerical accuracy of the correlation contributions obtained
from our frequency independent access are carefully tested
against the exact frequency dependent results. Perfect agree-
ment is reached and a speed-up of a factor 50 is established
for the incremental scheme.

1 Introduction

The field of many-body theory has been developing at
breathtaking speed in recent years. A significant amount of
effort is directed towards affordable descriptions of electronic
correlation in infinite periodic systems or large heteroge-
neous systems both in the ground state and in excited states.
Well-established schemes like the density functional theory
(DFT) [1,2] have seen more and more refinements, for exam-
ple, by means of the optimized effective potential method
(OEP) [3], time dependent DFT [4], screening implementa-
tions [5], the Wigner theory [6] or the reduced density matrix
functional theory (RDMFT) [7,8]. Other correlation schemes
have been derived, examples are the dynamical mean field
theory (DMFT) [9] or the GW approximation [10].
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Parallel to the density functional approaches wave func-
tion-based quantum chemical methods have also been trimmed
to be applicable to large systems and finally even to polymers
and crystals. As for ground state properties the ansatz of a
local incremental scheme in combination with the coupled
cluster (CC) method turned out to be valiant in applications
to large molecules or polymers and solids [11–21]. Signifi-
cant advances in the case of excited states have been reported
for quantum monte carlo methods (QMC) [22–25], algebraic
diagrammatic construction (ADC) [26], effective Hamiltoni-
ans [27,28] or the Green’s function approach [29–34].

These wave function-based methods are straightforwardly
applicable to both ground state and excited state calculations
alike and are amenable to systematic improvement on the
numerical accuracy by their very construction.

The general bottleneck of steep increase of numerical
effort with system size, however, affects all wave function-
based methods alike. It is precisely this obstacle which was
overcome in earlier applications by a formulation of electron
correlations in local orbitals and a hierarchy of correlation
contributions called the incremental scheme [19,20,25–37].

Recently, the author also demonstrated that a full Green’s
function approach with a frequency-dependent self energy
can in principle also be combined with the incremental scheme.
Band structure calculations were performed for LiH and LiF
[31–33] and a recent application to a molecule inside a molec-
ular junction also underlines the usefulness of such an
approach [34]. The key enabling such calculations was an
approach based on local orbitals and a real space formulation
of the self energy. However, at the same time it became mani-
fest that the explicit frequency dependence of the self energy
prevents a full exploitation of the potential of the incremental
scheme in local orbitals, which was tremendously successful
in applications to frequency independent quantities.

In the present work, we device a path around this problem.
The application of a mathematical identity allows us to cal-
culate a frequency independent intermediate quantity which
can be obtained by the incremental scheme in very much
the same way as the effective Hamiltonian or the ground
state correlation energy was obtained before. In fact, we use
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a similar technique of energy denominator decomposition
as Häser and Almlöf [38] and generalize it to cases beyond
perturbation theory and to the case of frequency-dependent
quantities while guaranteeing machine precision. The full fre-
quency-dependent self energy is recovered a posteriori with-
out any additional numerical effort. In this way, we can finally
obtain the full frequency-dependent self energy and hence the
Green’s function with the maximum of numerical efficiency.
This new approach overcomes the main obstacle in applica-
tions of the incremental scheme to the Green’s function and
we are thus led to believe that this constitutes a very important
step ahead.

In the following section, we describe the theory with
focus on the transformation from a frequency dependent to an
independent scheme. In Sect. 3 several numerical tests are
presented for a realistic system and Sect. 4 contains our con-
clusions.

2 Theory

In earlier works, we have designed a formulation of the Green’s
function correlation method so as to use local HF orbitals
as a starting point and then assess the correlation contribu-
tions in a full ab initio manner. This correlation method has
subsequently been combined with the so-called incremen-
tal scheme which proved to boost efficiency tremendously
[31–34].

However, in the case of the Green’s function theory, cor-
relations are described with a frequency-dependent quantity,
the self energy. This is different from all earlier applications
of the incremental scheme to ground state properties [11,16–
18,20,21] or excited states in solids [27,28,36,37]. So far,
this has prevented the method from exploiting the full com-
putational power of the incremental scheme in local orbitals.

We first briefly repeat the Green’s function correlation
method and then give a description of the incremental scheme
in Sect. 2.1, 2.2.

In the main parts Sect. 2.3, 2.4 a mathematical equality
is presented to overcome the numerical obstacle of the fre-
quency dependence. The quantum chemical expressions are
adapted towards this formula and several numerical checks
are perfomed in Sect. 3.

2.1 The Green’s function

The starting point of our approach are localized occupied
Hartree–Fock (HF) orbitals for the system at hand. This could
be a medium sized or large molecule or even a polymer or a
three-dimensional crystal. The following formulas are kept
completely general, the main issue being that the occupied
starting orbitals be local ones. In principle, it is also conceiv-
able, and for later developments envisaged, that the virtual
orbitals are localized, but for the present applications pre-
sented in this work the full canonical virtual orbital space is
used. In terms of such orbitals, a model space P and exci-
tation space Q are distinguished for the example of virtual

states (the case of occupied states being completely analo-
gous) as follows: the model space P describing the HF level
comprises of the (N +1)-particle HF determinants

∣
∣η

〉

, while
the correlation space Q contains single and double excita-
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We adopt the index convention that a, b, c, d and r, s, t, u
represent occupied and virtual HF orbitals, respectively. The
occupied HF orbitals are all localized. The idea of local-
ity translates into a restriction of the area the orbital can be
chosen from to one or more contiguous spatial parts of the
system. It is important to note that by enlarging the size of the
spatial area thus covered, this approximation can be checked
in a systematic way for convergence. Upon localizing even
the virtual orbitals, this feature can be expected to be even
more pronounced. A very important implication of this pro-
cedure is that the correlation methods employed must be size-
consistent. This idea is elaborated upon in Sect. 2.2.

The Green’s function approach has precisely the merit
of being intrinsically size-consistent, so that a diagonaliza-
tion allows us to go beyond perturbative results. Pertain-
ing to the above notation the Green’s function Gnm(t) =
−i〈T [cn(0)c†

m(t)]〉, where T is the time-ordering operator
and the brackets denote the average over the exact ground-
state, can be obtained from Dyson’s equation as:

Gnm(ω) = [

ω1 − F − �(ω)
]−1

nm . (3)

Here the self energy �nm(ω) which contains the correlation
effects has been introduced and 1 represents the unity matrix.

G0
nm(ω) is the HF propagator

[

G0(ω)
]−1

nm = ωδnm − Fnm .
The correlated energies are given by the poles of the Green’s
function which are numerically iteratively retrieved as the
zeros of the denominator in Eq. 3. To construct the self energy
the resolvent
[

ω1 − HR + iδ1
]−1
α;α′ (4)

is needed. It can be gained from diagonalization of the
Hamiltonian

[HR]α,α′ = 〈α∣
∣H − E0

∣
∣α′〉, (5)

where the states
∣
∣α〉, ∣∣α′〉 are those of the correlation space

Q as in Eq. 1. Here, E0 is the HF ground state energy while
the brackets indicate the HF average.

Along with a straightforward implementation, several per-
turbative approximations have been derived and analysed.
Theoretical connections to the perturbative effective Hamil-
tonian [27] were also established as mentioned below.

The self energy is approximated by decomposition into a
retarded and an advanced part

�nm(ω) = �R
nm(ω) + �A

nm(ω). (6)

In what follows, the superscript R will be used throughout
to refer to the retarded case, while A is taken to denote the
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advanced part. Furthermore, the configuration space will be
restricted to single excitations, i. e. three-body-interactions.

In the following, only the construction of the retarded
self energy part is given, the case of the advanced part being
analogous.

The space of two-particle one-hole states (2p1h) is spanned
by

∣
∣r, s, a

〉 = a†
r a†

s aa
∣
∣�HF

〉

. The Hamiltonian is set up in this
basis as: [HR]rsa,r ′s′a′ = 〈r, s, a

∣
∣H − E0

∣
∣r ′, s′, a′〉 and is

subsequently diagonalized.
Diagonalizing the matrix HR results in the eigenvectors

SR and eigenvalues λR. The retarded part of the self energy
is then constructed as

�R
nm(ω) =

∑

rsa;r ′s′a′
	(rs; na)

[

ω1 − HR + iδ1
]−1
rsa;r ′s′a′

	(r ′s′; ma′)

=
∑

rsa;r ′s′a′
	(rs; na)

∑

q

SR
rsa;q

1
(

ω − λR
q + iδ

)

SR
q;r ′s′a′	(r ′s′; ma′). (7)

	 is a shorthand for 	(rs; ta) = Wrsta −Wrsat and W are the
standard two-electron integrals. In all of the following dis-
cussions we consider only the case of correlation corrections
to the HF levels close to the HOMO–LUMO gap, so that no
intruder states appear in the above equation. The application
of the incremental scheme (cf. Sect. 2.3) to the special case
of satellites [31] is thus excluded from the present applica-
tions. Numerically, it is advantageous to first form and store
the frequency independent quantity

DR
n;q =

∑

rsa

	(rs; na)SR
rsa;q (8)

and rewrite expression (7) as

�R
nm(ω) =

∑

q

DR
n;q

1
(

ω − λR
q + iδ

) DR
q;m . (9)

2.2 The incremental scheme

The efficiency of the procedure is derived from the
application of an incremental scheme. The task of correlating
electrons in a large system is broken down systematically to
diagonalizations in smaller subsystems. A sketch of the idea
is given in Fig. 2 in Sect. 3.

As subsets of the incremental scheme, some arbitrary
spatial parts of a molecule, representing a suitable partition-
ing, are chosen for this example. These parts are henceforth
referred to as regions. Let us assume that we are interested in
some quantity Q for which we would like to determine corre-
lation contributions on top of its HF value. Examples for such
a quantity would be the ground state energy ε of a system,
the self energy matrix �i j (ω), the transmission coefficient T
for charge transport through the system under consideration,
to name but a few.

An incremental description of the correlation contribu-
tions Q to the quantity at hand could start with a corre-
lation calculation in which only excitations inside one of
the regions I–VI, e.g. region I in Fig. 2, are allowed. This
results in a contribution to the correlation effects which is
labeled one-region increment QI as expressed in Eq. 10.
Of course, there are as many one-region increments as re-
gions chosen to map the system. They are thus indexed with
the region they are referring to. In the next step, the cal-
culation is repeated with excitations correlating the charge
carriers being allowed to a region enlarged by one addi-
tional region, for example, region II in Fig. 2. The result of
this calculation is denoted as QI,II and the difference with
respect to the one-region increments then isolates the ef-
fect of additional excitations involving this additional re-
gion II and constitutes the two-region increment as shown
in Eq. 11. This procedure can be continued to more and more
regions. As an example Eq. 12 shows the three-region incre-
ment QI,II,IV, where the benzene ring and one thiol group are
included.

In the end, the summation Eq. 13 of all increments is the
final approximation to the sought quantity Q. The restric-
tions on the summation indices A, B and C prevent double
counting of contributions.

�QI = QI (10)

�QI,II = QI,II − �QI − �QII (11)

�QI,II,IV = QI,II,IV − �QI,II − �QI,IV (12)

−�QII,IV − �QI − �QII − �QIV

Q = ∑IV
A=I �QA

+ ∑IV
A>B=I �QA,B

+ ∑IV
A>B>C=I �QA,B,C + · · ·

(13)

The main idea of the incremental series (Eq. 13) is to exploit
the mainly local character of correlation corrections to HF
results. This feature should manifest itself in a rapid decrease
of increments both with the distance between the regions
involved and with their number included in the increment.
This means that only a few increments need to be calculated.
It is crucial to emphasize that the cutoff thus introduced in
the summation (Eq. 13) is well controlled, since the decrease
of the incremental series can be explicitly monitored.

Furthermore, physical information can be extracted from
the incremental scheme. In general, the relative weight of
specific increments with respect to others helps to identify
important correlation contributions as was elaborated upon
in earlier works [20,33,34,36].

The special case of the ground state correlation energy ε
is well suited to illustrate the incremental scheme. The equa-
tions are obtained directly by setting Q = ε in Eqs. 10, 11
and 12 so that the final approximation reads in analogy to
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Eq. 13:

ε =
IV
∑

A=I

�εA +
IV
∑

A>B=I

�εA,B +
IV
∑

A>B>C=I

�εA,B,C + · · ·

(14)

As another application of the incremental scheme, we
denote the corresponding equations for the calculation of the
self energy. For each matrix element �i j (ω) the incremental
scheme holds as

��A
i j (ω) = �A

i j (ω). (15)

��
A,B
i j (ω) = �

A,B
i j (ω) − ��A

i j (ω) − ��B
i j (ω). (16)

��
A,B,C
i j (ω) = �

A,B,C
i j (ω) − ��

A,B
i j (ω)

−��
A,C
i j (ω) − ��

B,C
i j (ω) (17)

−��A
i j (ω) − ��B

i j (ω) − ��C
i j (ω). (18)

The self energy is finally approximated by

�i j (ω) =
∑

A

��A
i j (ω) +

∑

A>B

��
A,B
i j (ω)

+
∑

A>B>C

��
A,B,C
i j (ω) + · · · (19)

In earlier applications to band structure calculations it was
demonstrated that the correlation correction γ = (LUMO–
HOMO)HF − (LUMO–HOMO)CORR of the band gap gives
a suitable measure of the correlation effects accounted for,
where (LUMO–HOMO)HF is the HOMO–LUMO gap on
the HF level and (LUMO–HOMO)CORR is the correlated re-
sult. This correction can also be used as a target quantity for
the incremental scheme in very much the same spirit as the
ground state correlation energy ε inserted above.

Plenty of experience has been gained with applications of
the incremental scheme to ground state properties and very
good convergence of the incremental scheme in all cases was
found [11–18,20,21].

In an earlier work, we pointed out that Epstein–Nesbet
second order perturbation theory (EN2) results are obtained
if the diagonalization of the Hamiltonian matrix (Eq. 5) is
skipped and its diagonal elements are used as eigenvalues in
Eq. 7 instead [32]. Those eigenvalues are then given by

λR
rsa = Frr +Fss −Faa +	(rs; rs)−	(ra; ra) − 	(sa; sa)

= εr +εs −εa + Jrs −Krs − Jra +Kra − Jsa +Ksa .

(20)

In a further simplification the ordinary Møller–Plesset per-
turbation theory result (PT2) is obtained by only retaining
the Fock quantities: λR

rsa = εr + εs − εa . A comparison of
algebraic expressions and diagrams then allowed to establish
the relation

�
(PT2)
i j (ω = εi ) = Hef f,(PT 2)

i j − Fi j , (21)

where H eff,(PT2)
i j is the second-order effective Hamiltonian.

In a similar fashion, we can show that the advanced part of

the self energy in Eq. 6 to second-order perturbation theory
taken at the frequency ω = εi can be used to find the second
order value of the ground state correlation energy. To this
end we evaluate this part of the self energy for indices n, m
referring to virtual HF orbitals r, s. Then the second order
expression for �A

nm reads in analogy to Eq. 7

�A
rs(ω = εr ) ≈

∑

abt

	(ab; r t)
1

(εr + εt − εa − εb)
	(ab; st).

(22)

Taking the trace of Eq. 22 yields

∑

abtr

	(ab; r t)
1

(εr + εt − εa − εb)
	(ab; r t). (23)

This is just the formula for the second-order diagram for
the ground state correlation energy as for example given by
Monkhorst [39]. In consequence, at the perturbative level,
the correlation contribution ε to the ground state energy can
easily be extracted from the self energy formulas and does
not need to be calculated via the cumbersome standard fre-
quency integral over the Green’s function (E0 =−i limη→0+
∫ +∞
−∞

dω
2π

eiηω
∑

m

[(

F + 1
2�(ω)

)

G(ω)]mm [31]).
Despite earlier applications of the incremental scheme

to the self energy and hence to the correlation correction of
excitation energies [31–33], the scheme is rendered awkward
due to the frequency dependence as is illustrated in the next
section.

2.3 A frequency independent incremental scheme

We start from the observation that the frequency dependence
introduced by the frequency-dependent energy denominator
in Eq. 7 is responsible for the incremental scheme to become
cumbersome and infeasible for two reasons. First of all the
sum in Eqs. 7, 9 runs over the full matrix of the correla-
tion space (in the explicit formula the correlation space is
described by indices r, s, a, or in the basis diagonalizing the
Hamiltonian is abbreviated as q) which can easily extend to
some million single terms. This sum has to be evaluated for
each frequency ω separately for any ω the process comes
across in the iterations. Secondly, this has to be done not
just for one self energy matrix, but rather for all matrices
involved in the incremental description of the self energy.
These summations are thus very time-consuming. Moreover,
to minimize this time, all the eigenvectors contained in DR

n,q

(cf. Eq. 8) and eigenvalues λR
q in Eq. 9 should be simulta-

neously available in the main memory of the computer for all
increments, which means that the main memory requested is
also very huge.

An accurate variable separation of the denominator would
surely serve as a remedy to this shortcoming. However, weight
has to be put on the condition that the separation be mathe-
matically exact and numerically manageable.



490 M. Albrecht

First, we cast the problem into an abstract form. The cul-
prit is of the form

1

ω − λ
, (24)

where ω is the frequency for which the self energy is to be
evaluated, and λ is some eigenvalue of higher excitations. In
the case of the 2p1h space, we have the relation

0 < ω < λ, (25)

while in the case of the 2h1p space, this becomes

λ < ω < 0. (26)

We are looking for a way to decompose this expression into
different factors for ω and λ, ideally in the form

1

ω − λ
= f̃ g̃(λ)h̃(ω), (27)

where f̃ is a constant and g̃ and h̃ are some suitable func-
tions. This decomposition would allow us to first evaluate
the costly summations over the correlation space once and
for all independent of the frequency and in the end simply
multiply with h̃(ω) to obtain the full expression at the desired
frequency.

In the following, we demonstrate how an ingenious decom-
position developed by W. Hackbusch and B.N. Khoromskij
(submitted, cf. Acknowledgements) could be used for the
problem at hand. They have looked at an expression similar
to Eq. 24 and found the mathematically exact formula

1

x + y
=

∫ ∞

0
dρ f (ρ)g̃(x, ρ)g̃(y, ρ). (28)

Clearly, this would solve the problem in the sense that we
could take the integral outside the summation in the self en-
ergy and first evaluate all the f (ρ), g(y, ρ) for all ρ ∈ [0,∞]
with the idea y = −λ and then evaluate g(x, ρ) in the same
interval for ρ with x = ω. However, the decisive point to note
is that the evaluation of the integral should be much easier
than the summation over the frequency-dependent self energy
expression, otherwise we would have gained nothing. In this
respect, a simple minded version of Eq. 28 would turn out
to fail. The situation is saved by the discovery of Hackbusch
and Khoromskij who established that the following version
is absolutely reliable and rapidly convergent in all cases:

f (ρ) = cosh(ρ)

1 + e− sinh(ρ)
(29)

g̃(x, ρ) = e−xg(ρ) (30)

g(ρ) := log(1 + esinh(ρ)). (31)

As is obvious from Eq. 31, we must have x, y > 0. In fact
Hackbusch and Khoromskij formulate as condition for con-
vergence:

1 < x < y < ∞. (32)

We will show later, how the problem at hand can be recast
to be in conformance with Eq. 32. Here, we first point out

the tremendous simplification the decomposition can bring
about. The somewhat involved form of the integrand Eq. 29
finds its justification in the simple and stable form, in which
the integrand can be evaluated. In fact, we have:

∫ ∞

0
dρ f (ρ)e−xg(ρ)e−yg(ρ) ≈ h

l
∑

k=−l

f (hk)e−xg(hk)e−yg(hk),

(33)

where l defines the level of approximation and the step width
h is given by

h = 1

l
log

(
4π2l

3

)

. (34)

We will establish in the next section that a value as small
as l = 64 is sufficient to achieve machine precision in the
approximation Eq. 33, while l = 32 is perfectly satisfactory
for the final result as well.

It should be stressed that our denominator decomposi-
tion is completely general. We do not strive to intertwine
the energy denominator with any expression which might
appear in the numerator. Thus, our approach can be applied
irrespective of what perturbative or non-perturbative approx-
imations the self energy might be subject to. This is con-
trasted by an earlier application of Häser and Almlöf [38],
where the evaluation of frequency independent perturbative
expressions for the ground state energy are rendered more
efficient by a Laplace transformation, which is a special case
of our decomposition in Eq. 28.

Before rewriting the incremental scheme using the decom-
position (Eq. 33), we first reformulate the original problem
so as to match condition 32. To do so, four cases have to be
distinguished:

2.3.1 The retarded part for positive frequencies

When the retarded part of the self energy is evaluated for
positive frequencies, then ω normally runs over the range
of low-lying virtual HF orbitals. This is the regime, where
the application of the incremental scheme is admissible and
where we are interested in obtaining correlation corrections.
The eigenvalues obtained from diagonalizing the Hamilto-
nian HR, on the other hand, describe single and double exci-
tations on top of N + 1-particle HF determinants, and thus
have higher energies than the low-lying N + 1-particle HF
states themselves. The situation is pictured in Fig. 1a.

The index q just labels the eigenvalues in the correlation
space as in Eq. 9. With the restriction ω < ωmax < λmin

q < λq
and the definitions

θ := λmin
q + ωmax

2
, (35)

� := λmin
q − θ (36)
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λq

ω λq

0 θ
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ω

0

energies

c)

θ

Δ
λq

ω λq

0

energies

d)

θ

Δ

Fig. 1 Illustration of the energy ranges in the four different cases in the
set-up of the self energy as explained in the text

we can rewrite the energy denominators as:
1

ω − λq
= − 1

�

1
λq−θ

�
+ θ−ω

�

(37)

= − 1

�

1

x + y
. (38)

In the last line, correspondence to the mathematical treatment
above is made by the identifications

x := θ − ω

�
(39)

y := λq − θ

�
(40)

together with the observation that we always fulfil

1 < x < y < ∞. (41)

With this correspondence established, we can simply state the
results of rewriting the energy denominator in the remaining
three cases.

2.3.2 The advanced part for negative frequencies

According to panel b of Fig. 1 frequencies and eigenvalues
are restricted as λq < λmax

q < ωmin < 0 and the definitions

θ := λmax
q + ωmin

2
, (42)

� := θ − λmax
q (43)

lead to
1

ω − λq
= 1

�

1
ω−θ
�

+ θ−λ
�

(44)

= 1

�

1

x + y
, (45)

where again the identification

x := ω − θ

�
(46)

y := θ − λq

�
(47)

guarantees condition 41.

2.3.3 The advanced part for positive frequencies

According to panel c of Fig. 1 frequencies and eigenvalues
are now restricted by λq < λmax

q < 0 < ωmin < ω and the
definitions

θ = λmax
q

2
, � = |θ |

2
(48)

lead to
1

ω − λq
= 1

�

1
ω+|θ |

�
+ |λq|−|θ |

�

(49)

= 1

�

1

x + y
, (50)

while again the identification

x := ω + |θ |
�

, y := |λq| − |θ |
�

(51)

fulfils condition 41.

2.3.4 The retarded part for negative frequencies

Finally panel d of Fig. 1 illustrates that frequencies and
eigenvalues are now restricted by < ω < ωmin < 0 <
λmin

q < λq and the definitions for θ and � now read

θ = λmin
q

2
, � = θ

2
(52)

so that
1

ω − λq
= − 1

�

1
|ω|+θ

�
+ λq−θ

�

(53)

= − 1

�

1

x + y
, (54)

where x, y correspond to

x := |ω| + θ

�
, y := λq − θ

�
. (55)

This identification again fulfils condition (41).

2.4 The frequency independent formulas

We now proceed with rewriting the formulas for the incre-
mental scheme for the case of the retarded part of the self
energy while looking at positive frequencies. The other parts
can be reformulated in strictly analogous ways. A single en-
ergy denominator is now evaluated as:

1

ω − λq
= − 1

�
h

l
∑

k=−l

f (hk)e− θ−ω
�

g(hk)e− λq −θ

�
g(hk), (56)

where the summation over l is a very finite one with not more
than about 100 parts, independent of the quantum chemi-
cal size of the problem. This decomposition inserted in the
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expression for one self energy matrix element in Eq. 7 then
takes the form (suppressing the mathematical convergence
factor iδ):

�R
nm(ω)

=
∑

rsa;r ′s′a′
	(rs; na)

∑

q

SR
rsa;q

1
(

ω − λR
q + iδ

) SR
q;r ′s′a′	(r ′s′; ma′)

≈
∑

rsa;r ′s′a′
	(rs; na)

∑

q

SR
rsa;q

(−h

�

)

×
l

∑

k=−l

f (hk)e− θ−ω
�

g(hk)e− λR
q −θ

�
g(hk)SR

q;r ′s′a′	(r′s′; ma′)

=
l

∑

k=−l

e− θ−ω
�

g(hk)

⎡

⎣
∑

rsa;r ′s′a′
	(rs; na)

×
∑

q

SR
rsa;q

(−h

�

)

f (hk)

e− λR
q −θ

�
g(hk)SR

q;r ′s′a′	( r′s′;ma′)
]

=
l

∑

k=−l

e− θ−ω
�

g(hk)

[
∑

q

DR
n;q

(−h

�

)

f (hk)

e− λR
q −θ

�
g(hk) DR

q;m
]

, (57)

where the summation describing the decomposition of the
energy denominators has been taken to be the outermost sum-
mation and again the stored quantities (Eq. 8) have been used.
The quantities in the angled brackets are frequency indepen-
dent. For each value of l we can thus calculate independent of
the frequency beforehand and then store a matrix �

R,k
nm given

by

�R,k
nm =

∑

q

DR
n;q

(−h

�

)

f (hk)e− λR
q −θ

�
g(hk) DR

q;m . (58)

The incremental scheme then carries over in full to this new
quantity with the matrix elements �

R,k
nm replacing the abstract

quantity Q in Eqs. 10, 11, 12 and 13
Whenever the frequency-dependent self energy needs to

be evaluated, it can then easily be assembled as

�R
nm(ω) =

l
∑

k=−l

e− θ−ω
�

g(hk)�R,k
nm . (59)

This can be done in no time, since only very few terms, one for
each value of k, are needed, and this constitutes the break-
through towards a feasible incremental scheme of the self
energy. The incremental scheme is now applied to �

R,k
nm irre-

spective of the frequency, and the self energy can then be
obtained in the end by virtue of Eq. 59.

This frequency independent formalism has now been fully
programmed as an add-on option in the program package

GREENS and allows to test the numerical performance as
put forth in the following section.

3 Results and discussion

In this work, we want to demonstrate the numerical feasibil-
ity and stability of the decomposition of energy denominators
when applied to an incremental description of the self energy.
To this end we compare the results obtained according to
formula 59 with an earlier frequency-dependent procedure
described by Eq. 7. All self energies are evaluated in the
EN2 scheme. We focus on a system which we recently inves-
tigated in the frame of electronic transport through molecular
junctions [34]. The molecule under consideration is a para-
dithiolbenzene. A vdz basis set with polarization functions
was used throughout the calculations. In a first preparatory
step localized HF orbitals were obtained for the molecules
employing the Pipek–Mezey option of the program package
MOLPRO. The four–index transformation was accomplished
by means of the HF program package WANNIER[40] and the
subsequent correlation calculations were performed by the
program GREENS developed in our laboratory[31,32,34].

The incremental scheme has been applied to the para-
dithiolbenzene molecule with a partitioning shown in Fig. 2.
The thiol groups are assembled into incremental regions I
and III. For illustrative purposes the carbon ring was split
into two asymmetric parts, a larger one (region IV, upper
part) and a smaller one in the lower part, denoted as part II.
The incremental scheme will then display how the different
parts contribute to the correlation effects.

3.1 Numercial reliability

We start with a numerical analysis of the validity of the pro-
posed energy denominator decomposition Eq. 56. To this end,

Fig. 2 Sketch of the incremental scheme, exemplifying a possible par-
tition of the para−dithiolbenzene comprising four parts denoted as I,
II, III and IV
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Fig. 3 Plots of the relative error of the denominator decomposition for all eigenvalues λ. The eigenvalues are given in Hartree. The range l of
the approximate sum of the decomposition is l = 8 (upper left panel), l = 16 (upper right panel), l = 32 (lower left panel), l = 64 (lower right
panel),

we have chosen the spectrum of the 2p1h space of a third of
the benzene ring (one-region increment comprising of region
II in Fig. 2). For each of the approximately 50000 eigenvalues
λq the expression 1

ω−λq
was evaluated for w = 0.114048

Hartree. λq was found to be in the interval 0.383114 ≤ λq ≤
7.347588 Hartree.

The relative error of the approximated denominator with
respect to the numerically true result is plotted for all eigen-
values λ for various values of l in Fig. 3.

From the upper left panel of the figure one can conclude
that a value of l = 8 leads to relative errors of up to 4 %.
However, this error is down to 0.04 % for l = 16 as shown in
the upper right panel. The choice l = 32 brings this down to
a relative error of 10−8 (lower left panel) and finally machine
precision 10−15 is achieved for l = 64 (lower right panel).

The relative error can be summed up for all the eigen-
values for this increment, which are some ten thousands,
so the machine error of 10−15 should then amount to some
10−11. As can be seen from Tab. 1, this is indeed the case.

For l = 64 the integrated relative error amounts to −2.7×
10−12. This quantity is a good measure for the error of the
method, because the calculation of the self energy precisely

sums over the same amount of denominators. Thus all data are
intrinsically only accurate to 10−11, irrespective of whether
or not our proposed decomposition is applied. For l = 32
all energies would come out accurate to 10−6, which is still
acceptable, while lower values of l should not be used. In sum
the performance of the denominator decomposition is very
impressive. l = 64 implies that the energy denominators
are approximated with 129 terms only to achieve machine
precision over the entire range of possible values that might
occur. In this way our scheme is independent of a case-sen-
sitive search for suitable integration points of a Laplace-type
decomposition as it was used in ref. [38].

Finally the convergence with l is checked for the one-
region increment II and for the region including parts II and
IV. The latter comprises of the carbon ring system. The results
are displayed in Table 2. The gap correction γ denotes the
correlation corrections to the HF HOMO–LUMO gap in eV.
This quantity is frequently used in discussing the incremen-
tal scheme so as to assess correlation effects in one single
number rather than having to monitor huge matrices [31–
34]. (This is not to say that we propagate a particular physi-
cal meaning for the HOMO–LUMO gap of a finite system.)
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Table 1 Integrated relative error of the denominator decomposition for various levels of accuracy l

l 8 16 32 64

Integrated relative error 352.6939 −0.7252166 1.401267 × 10−6 −2.706844 × 10−12

Table 2 Convergence of increments with respect to l. Both the gap correction γ (in eV) and the correlation contribution to the ground state energy
ε (in Hartree) are shown for the increment referring to region II and the increment referring to regions II and IV

gap correction γ ground state correction ε

I II I (II,IV) I II I (II,IV)

l=8 1.21641625693881 3.21946344784797 −0.184182392681587 −0.624656406117148
l=16 1.23811508294961 3.27386787876785 −0.184205522065484 −0.625769114870404
l=32 1.23809733469899 3.27381320151962 −0.184205739664410 −0.625769554246712
l=64 1.23809733357899 3.27381319929349 −0.184205739664344 −0.625769554245726
Exact 1.23809733357899 3.27381319929352

Table 3 Incremental scheme for the ground state correlation energy ε in Hartree and for the correlation correction γ to the HOMO-LUMO gap (in
eV) calculated at a convergence constant l = 64. Row ‘all one-region’ gives the correlated results with all one-region increments included, row
‘nn two-region’ also takes into account all nearest neighbour two–region increments and so on. �ε and �γ monitor the incremental improvement

Increment Narrowing of the gap �γ ε �ε

1 HF Gap=11.3088
All one-region 3.8452 3.8452 −0.7725 −0.7725
I+II 3.9162 0.071 −0.7939 −0.0214
I+IV 4.0754 0.2302 −0.8043 −0.0317
II+IV 4.1561 0.3109 −0.8256 −0.0531
nn two-region 4.5996 0.7544 −0.9815 −0.2089
all two-region 4.6239 0.7787 −0.9821 −0.2096
nn three-region 4.6659 0.0420 −0.9821 −0.0000

In addition we have calculated the incremental contributions
to the ground state energy. Two increments were considered,
the one-region increment III of region II in Fig. 2 and the
sum of increments for the two regions II and IV together,
III+IIV+�III,IV, which describes the full benzene ring. Com-
paring the numerical values obtained for l = 8, 16, 32, 64
and the exact result gives a clear idea about the convergence
of the procedure with respect to l.

Convergence is achieved for l = 32, where the gap cor-
rection already agrees with the exact result up to 10−7 eV for
both increments. Machine precision (10−11 eV) is obtained
for l = 64. This tendency is found both for the one–region
increment I II (second column in Tab. 2) and for the sum of
regions II and IV, III + IIV + �III,IV (third column). Com-
paring the cases l = 32 and l = 64 demonstrates that the
convergence for the ground state quantity ε is even more
pronounced. The agreement between the l = 64 decom-
position and the exact result (obtained from using the fre-
quency dependent denominators) is very impressive. The
same results are obtained for the first increment while the
deviation for the second one is 3 × 10−14 eV . Thus the real
relative errors are much smaller than the worst possible one,
which was calculated above to be in the order of 10−11. This
can be understood by looking again at the lower right panel in
Fig. 3 which gives the relative error of a single energy denom-

inator decomposition for l = 64. The error is quantized with
the machine precision 10−15, but the sign is basically equally
distributed between + and −, so that the sum over the real
relative errors is basically avaraged out to zero. This can be
understood on statistical grounds. By contrast, in Table 1 we
discussed the worst case, a sum of the absolute value of the
individual errors.

In what follows, the incremental scheme is analyzed with
the parameter l = 64 throughout. The results are shown
in Table 3 for both the correlation correction γ to the HF
HOMO–LUMO gap and the ground state energy. The latter
was obtained in the EN2 approximation from a formula sim-
ilar to Eq. 23. However, it was obtained in the same manner
as the self energy after the decomposition of the denomi-
nator was made. The terms ‘one-region’, ‘two-region’ and
‘three-region’ refer to inclusion of one-region, two-region
and three-region increments. The abbreviation nn indicates
next-nearest neighbour constellations. From the table, it can
be seen that most correlation corrections are assessed with
the one-region increments, which correct the HF value of the
HOMO–LUMO gap of 11.309 eV by an amount of 3.845 eV.
Inclusion of two-region increments leads to an additional cor-
rection of 0.779 eV. As was found in an earlier work, three-
region increments do not significantly contribute at all. The
next-nearest neighbour three-region contributions including
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Table 4 Numerical effort for the frequency dependent treatment (�(ω)) and the frequency independent calculations (�) in the three cases (a), (b)
and (c) as specified in the text. Both computation time (in s) and main memory RAM requirement (in MB) are specified. The second column gives
the number of increments involved in the calculation. Column ‘Speed-up’ states the number of times the � case is faster and column ‘Savings’
states the amount of RAM in % saved by the � case compared to the �(ω) case

Case No. of increments time/s RAM/MB

�(ω) � Speed-up �(ω) � Savings (%)
a 4 1509 69 22 130 106 18
b 9 5199 134 39 477 240 50
c 12 9819 207 47 817 322 61

the full benzene ring only amount to 0.042 eV. Even the sec-
ond–next–nearest neighbour two-region increment between
regions I and III, i.e. the two thiol groups, amounts to a meagre
0.0243 = 0.7787 − 0.7544 eV as can be seen by subtracting
the two incremental values for ‘nn two-region’ and ‘all two-
region’ in column ‘�γ ’ in Table 3. The overall convergence
of the incremental scheme becomes apparent by looking at
the numbers printed bold face. They state the contributions
for up to all one–all two- and the next-nearest neighbour
three-region increments which include the full benzene ring.

The influence of the next-nearest-neighbour increments
(regions I+II, I+IV and II+IV) are stated separately in the
lines marked ‘I+II’, ‘I+IV’ and ‘II+IV’ in the table. The col-
umn ‘�γ ’ indicates the improvement obtained upon includ-
ing the respective two-region increment in addition to all
one-region increments. It is rather small for the ‘I+II’ case
while the largest two-region increment is the ‘II+IV’ incre-
ment which restores the integrity of the benzene ring for the
correlation treatment.

As can be seen from the last column in Table 3, these
findings are confirmed for the correlation contribution to the
ground state energy in very much the same way.

The overall result is a correlation contribution of −0.982
Hartree in EN2. This result is embedded by the results of ordi-
nary Møller–Plesset second order perturbation theory (PT2),
which were obtained using MOLPRO. PT2 using the very
same localized orbitals yields a correlation contribution ε
to the ground state energy of ε = −0.618 Hartree, using
the canonical HF orbitals increases this result to −1.016
Hartree. As expected, we thus recover the fact that PT2 in
local orbitals yields results which fall way short of those
where canonical orbitals are used. However, the EN approx-
imation in local orbitals allows to make up for most of this
shortcoming. This has been analysed time and again by var-
ious authors [27]. For the present analysis, we did not go
the length of implicitly summing certain classes of contribu-
tions up to infinite order in the calculation using localized
orbitals.

In sum, it can be concluded that converged results are al-
ready obtained on the two-region increment level and would
justify the cutoff applied to the incremental series after the
two-region contributions. In this way the local character of a
correlation hole around a quasi particle manifests itself [41].
It is important to note that the incremental scheme thus al-
lows for a well-monitored and significant simplification in
the numerical effort, since the space to describe two-region

increments is in general significantly smaller than the one for
three regions included.

3.2 Computational savings

We now turn to a discussion of the computational savings
achieved by the new formulation of the incremental scheme
for the self energy. In particular, we compare computation
time and memory requirements for both the case of the com-
mon frequency dependent treatment (denoted �(ω)) and for
the case that the intermediate frequency independent quan-
tity � is evaluated and then the self energy restored (de-
noted �). In the latter case, again all calculations are done
with machine precision, meaning l = 64. Since both com-
putation time and memory requirement scale linearly with
l, the computational effort for other choices of l can be ob-
tained accordingly. Table 4 compares computation times and
memory requirements for the main memory RAM. This is
done for an incremental scheme comprising of (a) just the
one-region increments, (b) additionally also the next-near-
est neighbour two-region increments and (c) all one- and
two-region increments plus the two next-nearest neighbour
three-region increments which contain the full benzene ring.
There are 4, 9 and 12 increments for the cases (a), (b) and (c),
respectively.

The column ‘Speed-up’ denotes how many times faster
the frequency independent treatment � performs compared
to the conventional frequency dependent procedure. The last
column states the relative savings of main memory RAM in
percent. In the � case the computation time is almost per-
fectly linear with the number of increments, increasing from
about 70 s for four increments to almost 210 s for 12 incre-
ments. This is natural since while running the incremental
scheme the incremental self energy matrix is assembled from
(2l + 1)� matrices according to Eq. 59, irrespective of the
nature of the increments involved. This is contrasted by the
behaviour of the computation time in the �(ω) case, where
for each increment as many terms have to be assembled as the
correlation space covered by this increment might contain as
is visible from Eq. 8. As the number of increments considered
on a certain accuracy level gets larger, so does the number
of regions contained in the additional increments. But this
entails a tremendous increase in the size of the correlation
space. The doubling of computation time from case (b) with
nine increments to case (c) with just three increments more
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illustrates this point. In the present case a speed-up of a factor
47 was found. The savings on main memory RAM are also
significant. In the � case the memory space needed increases
linearly with the number of increments for the same reason
as does the computation time. The quantities to be stored
intermediately are just the � matrices for each increment.
On the other hand in the �(ω), case the eigenvectors DR

n,q

and eigenvalues λR
q from Eq. 8 have to be stored for each

individual increment, where q again runs over the entire cor-
relation space of the specific increment.

In sum, the strictly linear scaling of time and memory
requirements in the � case leads to a speed-up of about a
factor 50 and memory savings of almost two-thirds. Also
because of the linear scaling the speed-up and memory sav-
ings can be expected to be even much larger for larger sys-
tems, as is indicated by the tendencies displayed by Table 4.

4 Conclusions

This work introduces a new, frequency independent incre-
mental scheme based on local HF orbitals to construct the
self energy and ultimately the Green’s function with corre-
lations included in an ab initio way. This is achieved by first
applying the incremental scheme to a frequency independent
matrix, thus recovering the full numerical savings usually
provided by the incremental scheme. Subsequently, the fre-
quency dependent self energy and Green’s function can be
constructed without loss of numerical precision, yet with-
out additional numerical costs. This is brought about by a
suitable decomposition of the energy denominators in a fre-
quency dependent and an independent part. In a detailed anal-
ysis, we demonstrated that no numerical errors occur during
this procedure. The application of the incremental scheme is
speeded up by a factor of 50.

In sum, the presented approach allows to efficiently assess
correlation effects in general heterogenous systems by means
of the standard Green’s function theory in combination with
the incremental scheme.

We believe that this is a breakthrough which will lead to
large scale applications in the future.
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